Thinking Critically as a SWE

As a Software Engineer, it's important to consider the design of the system before you build it. What concepts or items are needed for
the system to work, and how can you represent these concepts in your code? This is what the design phase of the SDLC is for. This
phase follows the Requirements stage, which means we have the client expectations to act as a foundation for our implementation.

User Stories

Say you’re at a Hackathon where you and your team have spent about four hours finalizing an idea, a meme database, and now you
have about eight hours to get a working product. You’re in charge of finding the best way to store the memes and you’ve come up
with the following requirements:

e We need a quick way to get the memes database up and running

e |t should be easy to find memes

As discussed in the SDLC Prereq, requirements may seem a little abstract, but breaking them up into user stories will make them
much more feasible. User stories specify the path a user might take while interacting with your product. They traditionally take the
form:

As a [stakeholder type], | want to [action], so that | can [goal],

But as explained by Gojko Adzic and David Evans, a much better format is:

In order to [goal], the system will [action] instead of [alternative action or existing implementation]

Tasks

Once you've established your user stories, they can be broken down even further into actionable tasks. Tasks include the technical
details that go hand in hand with the code a developer will write, commit, and push to a shared repository. These tasks will specify
the implementation details needed for a developer to get the job done.

There can be tons of ways to implement a single feature, so it's important to consider the pros and cons of each potential
implementation. It's also not enough to just evaluate the pros and cons of an implementation, you also have to compare the pros and
cons of each implementation in the context of your system’s tech stack. This is where tradeoffs come in.

Tradeoffs play a huge role in mapping user stories to tasks. They take into consideration the pros and cons of an implementation in
order to determine which one works best in the given context for the task at hand. Tradeoffs also go hand in hand with optimizations
and sacrifices.

In order to optimize for one or more aspects and gain a pro, you’ll have to make a sacrifice and deal with a

The Cambridge Dictionary uses the word tradeoff in this sentence: “For some car buyers, lack of space is an acceptable trade-off for
a sporty design.” Given this sentence, it's safe to say that...

https://blog.crisp.se/2014/09/25/david-evans/as-a-i-want-so-that-considered-harmful
https://dictionary.cambridge.org/us/dictionary/english/trade-off

In order to optimize for aesthetics and gain a sporty design, some car buyers will sacrifice a roomier cabin and deal with

Returning to our Hackathon example, say you have three implementations in mind: create a database using MySQL, connect to an
open source meme database (that requires signing up for access to their API), or have users provide the memes via upload.

The easiest way to analyze these implementations and come up with tradeoffs by following the simple steps listed below.

Step One: Implementation Analysis

Create a pros and cons list for each implementation.

Pros

Cons

MySQL database - create a local MySQL
database server and populate it with
memes

+ Pro #1: Easy to spin up a MySQL
database server within the eight hours left
in the Hackathon, optimizes for time

+ Pro #2: Custom-built and therefore
flexible, so it's easy to add metadata (like
categories, tags, and comments) as
features are developed while progressing
through the hackathon, optimizes for

flexibility

- . It'll take time to populate the
database with memes and their metadata
- : Brings on new database
administration responsibilities like
permissions, schema design, network,
security, etc Since the database is hosted
locally,

Open Source database - setup a
developer account for the meme
database API and connect that way

+ Pro #1: An organized meme database
with tags already set up, optimizes for
structure

+ Pro #2: Database admin responsibilities
like network and security are taken care
of, optimizes for maintenance

- : Takes time to set up access to
the database since it's hosted externally

- : Permission is required to add or
remove memes and metadata from the
database

User Provided memes - have users
upload the meme and its metadata via
HTML, then store the image as a JPG
and its metadata as JSON

+ Pro #1: No need to worry about
database schema or details since users
will upload the memes themselves,
optimizes for simplicity

- : Input/Output with files can
introduce more computation time

- : The local machine will get
clogged with JPGs and JSON files, many

+ Pro #2: Ultimate flexibility since users
can upload the meme and any associated
metadata without adhering to any
database schema, optimizes for flexibility

of which may be duplicates

Step Two: Tradeoffs Matrix

Compare the implementations based on their optimizations.

Alternative

Choice

MySQL database

Open Source database

User Provided memes

MySQL database

In order to optimize for...

- time and gain MySQL
database Pro #1 (an
easy-to-spin-up
database server)

- flexibility and gain
MySQL database Pro
#2 (a custom-built
server that allows for
metadata to be added
as features are
introduced)

we’ll have to sacrifice...

- structure (Open
Source database Pro
#1: an organized
meme database with
tags already set up)

Both implementations optimize
for flexibility, but in order to
optimize for structure and gain
MySQL database Pro #2 (a
custom-built server that
allows for metadata to be
added as features are
introduced), we’ll have to
sacrifice simplicity (User
Provided memes Pro #1:
having no worries about
database schema or details
since users will upload the
memes themselves) and deal
with...

- maintenance (Open

Source database Pro
#2: an external
database solution
that handles database
admin
responsibilities)

and deal with...

Open Source database

In order to optimize for...

structure and gain

Open Source
database Pro #1 (an
organized meme
database with tags
already set up)

maintenance and gain

Open Source
database Pro #2 (an
external database
solution that handles

In order to optimize for...

structure and gain

Open Source
database Pro #1 (an
organized meme
database with tags
already set up)

maintenance and gain

Open Source
database Pro #2 (an
external database
solution that handles

database admin
responsibilities)
we’ll have to sacrifice...

- time (MySQL
database Pro #1: an
easy-to-spin-up
database server)

- flexibility (MySQL
database Pro #2: a
custom-built server
that allows for
metadata to be added
as features are
introduced)

and deal with...

database admin
responsibilities)
we’ll have to sacrifice...

- simplicity (User
Provided memes Pro
#1: having no worries
about database
schema or details
since users will
upload the memes
themselves)

- flexibility (User
Provided memes Pro
#2: users can upload
the meme and any
associated metadata
without adhering to
any database
schema)

and deal with...

User Provided memes

Both implementations optimize
for flexibility, but in order to
optimize for simplicity and gain
User Provided memes Pro
#1 (freedom from worries
about database schema or
details), we’ll have to sacrifice
time (MySQL database Pro
#1: an easy-to-spin-up
database server) and deal
with...

In order to optimize for...

- flexibility and gain User
Provided memes Pro
#1: freedom from
worries about
database schema or
details

- simplicity and gain
User Provided memes
Pro #2 (users can
upload the meme and
any associated
metadata without
adhering to any
database schema)

we’ll have to sacrifice...

- structure (Open
Source database Pro
#1: an organized
meme database with
tags already set up)

- maintenance (Open
Source database Pro
#2: an external
database solution
that handles database
admin
responsibilities)

and deal with...

The ability to come up with tradeoffs is an underrated skill that is worth mastering! As a beginner software engineer, considering
implementations and their projects is a great way to train your critical eye and consider the nuances that are introduced when
working on a project.

Step Three: Tasks Creation

Once you've taken the time to analyze potential implementations and apply your critical thinking skills to create tradeoffs, it's time to
create tasks. Remember, tasks help us take out user stories from statements to actionable steps. Follow along to learn how to create
actionable tasks!

First, select the implementation you’d like to follow through with:

Y| MySQL database - create a local MySQL database server and populate it with memes

74| Open Source database - setup a developer account for the meme database API and connect that way

Y| User Provided memes - have users upload the meme and its metadata via HTML, then store the image as a JPG and its
metadata as JSON

Now take note of why you've decided to go with this implementation. This will keep you honest as you work. If you know why you’re
doing something, you’ll gain a deeper understanding of the actions you're taking (which you’ll thank yourself for when a recruiter or
interviewer asks about why you wrote your code the way you did!)

To optimize for structure and durability, we’ll implement the Open Source database. We can follow the instructions given by the open
source database and get connected, which will take some time, but will guarantee that we have a working source of memes to pull
from!

Finally, break the implementation down into bite-sized tasks.

Setup a developer account for the meme database API and connect
- Register a developer account for the open source database’s API

- Store developer credentials safely in a configuration file
- Create a class that uses the developer credentials to open source database
- Write methods/functions for each of the CRUD operations

And you’re ready to roll! Now you have actionable tasks you can focus on for the rest of the Hackathon. Even if you don’t get through
all of them, it's always worth it to take the time to evaluate your options and formulate a plan. The ability to demonstrate these skills is
worth more than simply having a working product!

